
5f5J /7

The Automatic Parallelisation of Scientific Application codes using a Computer
Aided Parallelisation Toolkit

C.Ierotheou, S.Johnson, P.Leggett, M.Cross and E.Evans

The Parallel Processing Research Group,University of Greenwich,London SE10 9LS,UK

H.Jin, M.Frumkin and J.Yan

NAS Systems Division, NASA Ames Research Center, Moffett Field, CA, USA

Abstract

The shared-memory programming model is a very effective way to achieve parallelism

on shared memory parallel computers. Historically, the lack of a programming standard

for using directives and the rather limited performance due to scalability have affected

the take-up of this programming model approach. Significant progress has been made in

hardware and software technologies, as a result the performance of parallel programs

with compiler directives has also made improvements. The introduction of an industrial

standard for shared-memory programming with directives, OpenMP, has also addressed

the issue of portability. In this study, we have extended the computer aided parallelisation

toolkit (developed at the University of Greenwich), to automatically generate OpenMP-

based parallel programs with nominal user assistance. We outline the way in which loop

types are categorized and how efficient OpenMP directives can be defined and placed

using the in-depth interprocedual analysis that is carried out by the toolkit. We also

discuss the application of the toolkit on the NAS Parallel Benchmarks and a number of

real-world application codes. This work not only demonstrates the great potential of

using the toolkit to quickly parallelise serial programs but also the good performance

achievable on up to 300 processors for hybrid message passing and directive-based

parallelisations.

Introduction

The porting of applications to high performance parallel computers still remains a very

expensive effort. The shared memory and distributed memory programming paradigms

are two of the most popular models used to transform existing serial application codes to

a parallel form. For a distributed memory parallelisation it is necessary to consider the

whole program when using an SPMD paradigm. The whole parallelisation process can be

very time consuming and error-prone. For example, data placement is an essential

consideration to efficiently use the available distributed memory, while the placement of

explicit communication calls requires a great deal of expertise. The parallelisation on a

shared memory system is only relatively easier. The data placement appears to be less

crucial than for a distributed memory parallelisation, but the parallelisation process is still

error-prone, time-consuming and still requires a detailed level of expertise.

Despite the costly effort involved, the message passing-based parallelisation process for

distributed memory architectures has tended to be favoured. This is largely due to the

higher degree of scalability (often a characteristic of the architecture) and portability

(provided by standardising the message passing library used e.g. MPI [1]). However, the

porting of real application codes from machines that use a single serial processor to one

with multiple processors is far from a trivial process irrespective of the paradigm or

architecture being used. The relentless user desire for higher performance and scalability

together with the continuing evolution of parallel architectures has made the
parallelisationandsubsequentmaintenanceof acodea majorprogrammingeffort [2, 3].

There-emergenceof thesharedmemoryparallelmachinestypified by thecache-coherent
Non-Uniform Memory Accessarchitectureof theSGI Origin 2000[4] hasdonemuch to
promotetheuseof sharedmemorydirectivesto describeparallelismin anapplication. In
contrastto using messagepassing,the useof directives is relatively simple.For a single
programmultipledata(SPMD) parallelisationusingmessagepassing,considerationmust
be given to data placement (as the memory is physically distributed), masking of
statementsto ensureparallel executionand the introduction of communicationcalls to
ensurecomparableexecutionto theoriginal serialcode[5]. For aparallelisationbasedon
loop distribution andusing directives,considerationis only given to the loops and the
visibility of variables. Another benefit to using directives is that they can easily be
ignored sincethey are treatedascommentsif the compiler directive flag is not used.
Therefore,theuseof directives is generallylessintrusivewith fewercodemodifications
than that needed for a messagepassing-basedparallelisation. Programming with
directives is also relatively simple comparedto writing messagepassing-basedcodes
although it doesnot necessarilyprovide a performancebenefit. In the worst case,the
codewill executeto give erroneousresultsif directivesareincorrectlyusedand this can
be tedious to debug, for example the errors may be symptomatic of run-time race
conditions.

Ideally, onewould like to beableto automaticallyinsertdirectives(or messagepa_,.sing
calls) into theoriginal serialcodewith very little effort. In reality, this is not the case,the
performanceachievablefor real-world industrial application codesusing an automatic
approachis largely dependenton the quality of the dependenceanalysis. Since many
assumptionsmay berequireddueto thelack of knowledge(oftenavailableonly from the
user) this can significantly affect the quality of the generatedcode and hence the
performance.Despitethis limitation, manyparallelisingcompilershavebeendeveloped
over theyears.Someof themorenotableresearchandcommerciallyavailablecompilers
haveincludedSuperb[6], Paraphrase[7], Polaris[8], Suif [9] andKAI's toolkit [10].

The focusof this paperis to look at the semi-automaticparallelisationof codesusing an
industry standarddefining sharedmemorydirectives(OpenMP)asa meansto describe
theparallelismpresentin real-worldscientificapplicationcodes.

OpenMP - an industry standard defining shared memory directives

The introduction of the shared memory directive standard, OpenMP [11], addresses the

issue of portability across a range of platforms. The main aim of OpenMP is to achieve

portability without significantly sacrificing the performance of the parallel execution.

OpenMP includes a set of compiler directives and callable run-time library routines to

support shared memory parallelism for the C, C++ and Fortran programming languages.

To some extent, OpenMP will allow the programmer to incrementally develop a parallel

implementation and this makes it more attractive as it is easier to program.

OpenMPfollows the fork-and-joinexecutionmodel sothat eachtime a parallel regionis
definedthe processis used.A brief descriptionof the fork-and-join processis included
here for completeness.At the start of the processa single "master" thread exists.The
master thread executes sequentially until the first parallel construct (called OMP
PARALLEL)is encountered.At thispoint the masterthreadcreatesa numberof threadsto
assistthe masterthreadin concurrentlyexecutingthestatementsin the parallelregion. If
a parallel loop is encountered(defined by oMP DO)then the iterations of the loop are
distributedamongstall thethreads.An implied synchronisationis performedattheendof
the loop unless a NOWAIT directive option is specified. The SHARED and PRIVATE

clauses at the start of the parallel or work-sharing constructs define if the data is visible

globally or locally to a single thread. Reduction operations such as summations are

handled in parallel by using the REDUCTION clause. At the end of the parallel region all

the threads in the team synchronise and only the master threads continues with the

program execution.

Optimisation of the directives and their placement is essential to generate parallel code

that will execute efficiently. There is an overhead associated with every use of OMP

PARALLEL so reducing the number of parallel regions (by fusing them together whenever

legally possible) is a desirable optimisation. It is also the experience of the authors that

the use of the NOWAIT clause (whenever this is legal) can significantly improve the

parallel performance.

Semi-automatic parallelisation tools

The main goal for developing tools tc assist in the parallelisation of serial applicatioo

codes is so that as much of the tedious, manual and sometimes error-prone work is

performed by the tools and in a small fraction of the time that would otherwise be needed

for a manual parallelisation. With this in mind, the Computer Aided Parallelisation

Toolkit has been developed over a number of years to enable the generation of generic,

portable, parallel source code from the original serial code [12, 13, 14]. The toolkit

generates SPMD based parallel code for distributed memory systems or loop distributed

directive-based parallel code for shared memory systems. For distributed memory

systems, the toolkit has been used to successfully parallelise a number of application

codes [12, 15] based on the solution of a system of partial differential equations over a

defined geometry using a mesh. The mesh over which these equations are solved is used

as the basis for the partitioning of the data on to the distributed memory. The solution can

be computed for a single block structured, unstructured or multi-zone structured meshes.

The quality of the parallel source code generated benefits from many of the features

provided by the toolkit. For example, the dependence analysis is fully interprocedural and

value-based (i.e. detects the flow of data rather than just the memory location

accesses)[16] and allows the user to assist with essential knowledge about program

variables [17]. The placement and generation of communication calls also makes

extensive use of the interprocedural capability of the toolkit as well as merger of similar

communications [5]. Finally, the generation of readable parallel source code that can be

maintained was seen as a major benefit. The use of the toolkit to generate parallel code

for distributed memory systems will not be described in detail here since it has been

documented elsewhere [5, 12, 16, 17].

The toolkit canalsobeusedto generateparallelcodewith OpenMPdirectivesfrom the
original serial code.This approachalso makesuseof the very accurateinterprocedural
analysisand also benefitsfrom a directive browser to allow the user to interrogateand
refine thedirectivesautomaticallyplacedwithin thecode.

Automatic generation and placement of OpenMP directives in the serial code

The process the toolkit uses to automatically exploit loop level parallelism can be defined

by three distinct stages (see [18] for more details of these stages and their

implementation):

i. Identification of parallel regions and parallel loops - this includes a comprehensive

breakdown of the different loop types (these are described in more detail below).

Due to the current lack of support for nested parallel regions in OpenMP compilers,

only the outermost parallel loops are considered for exploitation so long as they

provide sufficient granularity. Since the dependence analysis is interprocedural, the

parallel regions can be defined as high up in the call tree as possible, in doing so,

provides a more efficient placement of the directives.

ii. Optimisation of parallel regions and parallel loops - the fork-and-join overhead

(associated with starting a parallel region) and the cost of synchronising is greatly

lowered by reducing the number of parallel regions required. This is achieved by

merging together parallel regions where there is no violation of data usage. In

addition, the synchroo.isation between successive parallel loops is possible if it car.

be proved that the loops can correctly execute as;r.,chror_.ously (using the NO_,'_AIT

clause).

iii. Code transformation ar, d insertion of OpenMP directives - this includes the

analysis for possible THREADPRIVATE common blocks due to the usage of the

common block variables. There is also special treatment for private variables in

non-threadprivate common blocks. If there is a usage conflict then a routine is

copied and the common block variable is added to the argument list of the copied

routine. Finally, the call graph is traversed to place OpenMP directives within the

code, this includes the identification of SHARED, PRIVATE and THREADPRIVATE

variable types.

An interactive browser to provide detailed information on loops

Although the dependence analysis carried out is very detailed, it can often contain

dependencies that had to be assumed to exist. In these cases, user assistance can be used

to improve the quality of the generated OpenMP code. This is done by classifying the

different types of loops that generally exist in application codes and using a browser

(Figure 1) to inspect and interrogate all the loops in turn. For example, the user can

enforce the classification of a selected loop by re-defining the loop type. The user can

also define the granularity threshold for a loop so that any loop below this level is not

considered for parallelisation. In our study we have identified the following different

types of loops:

i. Totally serial loops - These loops contain a loop-carried true data dependence that

causes the serialisation of the loop i.e. data assigned in an iteration of the loop is

used in a later iteration. (Other possible reasons for a loop to be defined as serial

include the presenceof I/O or loop exiting statements within the loop body). The

directive browser shows a list of the variables and a textual explanation of why the

loop is serial. However, the data dependence may have been assumed to exist and

the user may be able to supplement the dependence analyser with additional

information to prove that the data dependence does not exist. Alternatively, the user

may wish to enforce the removal of a serialising data dependence using the

dependence browser (Figure 2) In addition, this loop type does not contain any

nested parallel loops and also is not contained within a parallel loop.

ii. Covered serial loops - These are also serial loops containing a loop-carried true

data dependence, so they can be treated in a similar way to totally serial loops.

However, this type of serial loop is either nested within a parallel loop or contains

parallel loops within it. In the latter case, if the serial loop can be made parallel (see

totally serial loops) then the parallelism can be defined at a higher level and may

therefore enhance the performance of the execution.

iii. Falsely serial loops - These loops are not serial due to a loop-carried true

dependence. Instead, they will need to execute in serial due to the existence of

pseudo dependencies that represent memory re-use as this needs to be considered

when working within a globally addressable memory. The directive and dependence

browsers can be used together with any additional information the user may wish to

offer to re-examine if the variable(s) concerned can be privatised. In the process,

dependencies into or out of the loop are examined to test if the variable could be

made PNIVi_TE, or to re-examine if the loop carried pseudo dependencies axe

needed, iz; an .attempt to allow the loop to execute it_ pa_'aHel.

iv. Reduction loops -- The analysis is Jsed to determine if the loop body computations

represent a global reduction operation such as a MAX or summation. These loops

provide a partial update of the results by each thread followed by a global update to

give the final reduction value.

v. Pipeline loops - This is a special class of serial loops with loop-carried true

dependencies. Directive-based software pipelines can be used to good effect in

parallel. Figure 3 shows an example where OpenMP function calls are used to

define the pipeline start-up before the J-loop and the pipeline shutdown after the

loop. The example is taken from a version of the NAS APPLU benchmark. This is a

similar strategy to that adopted for a software pipeline used in a distributed memory

parallelisation with message passing. Figure 3 shows a software pipeline

implementation using a high level message passing library called the Computer

Aided Parallelisation Library (CAPLib) [19]. CAPLib is a thin layer that covers a

choice of message passing libraries such as PVM, MPI, Cray Shmem etc.

vi. Chosen parallel loops - These are the parallel loops at which the OMP DO construct

is defined. These loops may contain serial or parallel loops within their nesting but

are not surrounded by other parallel loops.

vii. Not chosen parallel loops - Also parallel loops, but these have not been selected for

application to the oMP DO directive. This is because these loops are surrounded by

other parallel loops at a higher nesting level. In general, the OpenMP compiler

suppliers do not currently support nested parallelism, therefore, even though

parallelism exists at these lower levels, it is not currently exploited.

Theaccuratedependenceanalysisallows thealgorithm to automatically generate efficient

OpenMP code in many cases. In the experience of the authors, this typically leaves a

small proportion of cases that require user interaction. For example, the use of workspace

arrays is very common in application codes, but the value-based nature of the dependence

analysis will often prove that no data is passed between iterations of a loop. The memory

re-use (pseudo) dependencies must however be set. This correctly does not classify such

loops as serial, however, the legal privatisation of these arrays to allow parallel execution

requires that no data is passed into or out of these arrays from or to outside the loop. The

value-based analysis, again greatly aids in proving that no such dependencies into or out

of the loop exist.

Test cases

Parallelisation of the NAS Parallel Benchmark codes

The NAS Parallel Benchmarks were designed to compare the performance of parallel

computers and have been widely used in this capacity. The details of the benchmarks and

their message passing implementations can be found in [20] and [21], respectively. The

dependence analysis was supplemented with very simple user information for some of the

benchmark codes. More details on the parallelisation of these benchmarks using the

toolkit can be found in [18] so only a brief report will be made here. Figure 4 shows the

performance achieved for six of the NAS benchmark codes on an SGI Origin 2000

(K10000 CPU running @195MHz) for the class A size of problems. The. cemparisons

show the performar_ce for the hand tuned .,z,.essage passing (MPI-hand) and OpenM?

(GMP-hand); ,.'he Computer Aided Paralie!isation "Ioolkit using OoeliMP (CAPO); and

the SGI Power Fortran Analyser (SG1-PFA). The parallel code generated using thetoolkit

is not tuned for the Origin 2000 architecture, so that for example, there are no explicit

'optimisations' for cache usage/re-usage. A summary of the findings indicate that:

• It was possible to generate parallel code using the toolkit in a few minutes while the

manually tuned parallelisations were created over a period of a few weeks.

• Code generated using the toolkit was within 5%-10% of hand tuned parallel

performance

• Code generated by the SGI-PFA is not as efficient as that provided by the toolkit

Parallelisation of FDL3DI code (Air Force Research Laboratory)

The FDL3DI code was developed by M.Visbal at the Air Force Research Labs to study

aeroelastic effects. The code solves the Navier-Stokes equations using a one-dimensional

structural solver component. The parallelisation of this 10,000 line source code took

approximately two hours (including user assistance) for the message passing-based

parallelisation using a 2-dimensional decomposition and half an hour for the OpenMP-

based parallelisation. The results shown in Figure 5 and Figure 6 are for a regular

100xl00xl00 node test case and indicate that very respectable performances were

achieved with both message passing and directive based approaches. It is also important

to recognise that the results are for the parallel code versions generated by the toolkit and

that no manual optimisation has been performed. Table 1 shows a summary of the key

communication requirements while Table 2 shows a summary of the key directives

generated.

Parallelisation of the R-Jet code(Ohio AerospaceInstitute)

The R-Jet code was developed by M.White and is a hybrid, high-order compact finite

difference spectral method. It is used to simulate vortex dynamics and breakdown in

turbulent jets. Although the code is explicit in time, the compact finite difference scheme

requires the inversion of tri-diagonal matrix systems.

As part of the identification for directive placement, the algorithm automatically applied

routine duplication to routines where there it was necessary to be able to fully exploit the

parallelism present. The code fragment shown in Figure 7 shows a part of routine rhs,

the two calls to r2r and a part of the routine r2r. The J loop in routine rhs and the K

loop in r2r are both identified as being parallel and can therefore benefit from being

encapsulated by the oMP DO construct. However, nested parallel regions are not currently

fully supported by the vendors so one solution to exploiting the parallelism at both levels

for different instances is shown in Figure 7. The complete list of routines duplicated can

be seen in the call graph for the R-Jet code Figure 8.

Table 3contains a summary of the statistics for the OpenMP directives automatically

generated by the toolkit. Figure 9 illustrates the execution performance of the

automatically generated OpenMP directive-based parallel code for a 500x500 node test

case. It demonstrates that a performance improvement of up to 32 processors of an SGI

Origin 2000 was possible even for such a small test case.

Parallelisation of the INS3D code (NASA Ames)

There is a trend towards hybrid hardware systems that comprise clusters of nodes

connected to each other through a communication interconnect. Within each node there is

a number of processors and a common shared memory. One obvious scenario could be to

exploit parallelism within a cluster using OpenMP directives while using message

passing to communicate data between clusters. This multi-level exploitation of

parallelism may have the potential to enable a more effective and scalable use of larger

numbers of processors to solve a common problem. The Computer Aided Parallelisation

Toolkit developed thus far has all the individual components to potentially exploit the

hybrid systems. The strategy for combining these two approaches seems a natural

extension. Indeed, a prototype has already been designed and implemented. However,

care is needed to identify the applications where such a hybrid model can be used to good

effect instead of using either pure message passing or pure OpenMP directives.

The parallelisation of the INS3D code using a mixed model of message passing and

shared memory directives is shown as an example where such a model can be used

effectively. A detailed account of this parallelisation was carried out by C.Kiris et al [22]

but only a summary is included here. The INS3D code solves the 3D, incompressible

Navier-Stokes equations and uses a structural, overset grid system. This is analogous to a

multi-zone type application code. The manual MPI parallelisation was carried out by
T.Faulkner and J.Mariani at NASA Ames and was used as the base code that was

inputted to the toolkit. The toolkit was then able to complement the parallelism defined at

the zone level by providing OpenMP directives for the parallelism defined within a zone

(Table 4). The test case is the Space Shuttle Main Engine high pressure turbo-pump

impeller.The geometrywasmadeup of 60 zonesand 19.2million grid points (the sizes
of the zonesrangedfrom 75,000to over 1million grid points).The results for the test
caseareshownin Figure 10and demonstratethe impressiveperformanceachievablefor
this hybrid parallelisation.The processorsarearrangedby MPI groupssothat with 300
processorsand 30 groups performing MPI/zone-level parallel execution, within each
group there is a total of ten threadsusedto perform the OpenMP/intra-zoneparallel
execution.

Conclusions

The work presented here demonstrates a number of significant differences between the

toolkit discussed here and other tools or compilers. It highlights the need for a very

accurate dependence analysis including the detection of dependencies interprocedurally,

and this is supplemented with the need for user interaction to aid in the parallelisation

process. There is also a need to carefully insert directives in an efficient manner to exploit

the systems as far as possible using generic techniques. Finally, this work has

demonstrated the performance achievable when using the toolkit to parallelise real large

scientific application codes.

Acknowledgements

The authors wish to acknowledge the assistance from C.Kiris (NASA Ames),

P.Saddayapan (OSU) and R.Luczak (ASC) for their involvement in generating results for

some of the test cases reported. The authors also wish to thank the many people at both

Greenwich and NASA Ames who have helped in both the CAPTool,; and the CAPO

developments. This _vork is supported by NASA Centract No. NAS2-14333 with MRJ

Technology Solutions, No. NASA2-37056 with Computer Sciences Corporation.

Up

Figure 1 Browsers used to inspect all loop types in the application code and detailed

information about the selected loop.

mm

l: $OLV[R

]_rlr_-SO00
r&c.Ni0,c_/D2"

_i IS TICK Pl;tZJ4 /.oor. Z'JL*c01rz_oLS ifDil_r_ or $W.l[:es

rm_r

]Dr _ _ _ I_.zli5 • 002" FZ_It.TS AIIO

ZF (;m 1_ m

TO _ InN _ cAIrroels: DepGIltpb S_titummt _br

OmlyShl_ Stlltemexts Tilat AI'I:

IConnl_'tlcl Dy Oioenden¢les I I IIouU_ Input

4O

S_'l,.0 0
Do)0 J-2, JN-L1 i

tP (QI0i_.zq 0) 21
RIP-1 Q

I:l,sr
_k4R-n (3)

IOIDI_
DX*(R(J*I)-R(J-I)]

C_IS_IWCT ¢01[rlL _
so wJs.T psx LJ_[$7
Cld.CtILJC_WI)

nO |0][*2.Z]I-LI

Lrm_ (:)-2_w (
OS-(s(z*l)-s(z-
&(z) -s_Sl (Z, j)/

c (i) .II_SB (X-L :
n (z) o- (_z) .e (t
I (z)-'lml.a (z. J)*
J(z)--i_(z),_m

OMrL,DK_

¢mez2.mz

IITJr-SINC_ (ImT) • 10

IU[SZD*r_SZDJ
:[SV][Zp - [SW.[_ * 1

IS _SIDU&L PPtlr_

F ((IS;r[E_L 1o)
rx;irr*. ' N[SI0_Jg.

DI

1._ Ko*etile4is;

MS

. _CJ[PJ_

I.|1- illl ht Ila ilQe:

Currllnt GrttpIl: IJ S_ltIments, 13 deplnde_chrs d|spilyld

I i Itouth_l Output

J

LIO_ Scrim: IA,II R<_lUr, e$

|SekK_d Ro_t;*_ 1

J'op Lrl _tr_,

I''_' I I""_"_'_ I
:ll SerhiVrIr_llel Lmll_r:

I !_I]LID_:I:Z_ 10 I-2o1W1.1

I i_W.]l.: _ :D_l 30 l'2; Ji'|. I

SGI._I[13.D0 10 I*2.1N-1.1

Figure 2 Dependence browser displaying the code and the equivalent dependence graph.

(a) Using OpenMP function calls to implement a software pipeline for routine BLTS
lloop = jend-jst

if (lloop .gt. mthnum) lloop = mthnum

iam = omp_get_thread_num()

if (iam .gt. 0 .and. iam .le. lloop) then

neigh = iam - 1

do while (isync(neigh) .eq. 0)

!$OMP FLUSH(isync)

end do

isync(neigh) = 0

!$OMP FLUSH(isync)

endif

!$OMP DO SCHEDULE(STATIC)

do j=jst, jend, l

do i=ist, iend, l

c

c

c forward elimination and back substitution for diag. block inversion

c

enddo

enddo

!$OMP END DO nowait

if (iam .lt. lloop) then

do while (isync(iam) .eq. i)

!$OMP FLUSH(isync)

end do

isync(iam) = i

!$OMP FLUSH(isync)

endif

(b) Using CAPLib message passing function calls to implement a software pipeline
for routine BLTS

CALL CAP RECEIVE(v(1,2,LOW-I,k),nx0*5-10,3,CAP LEFT)

do j=MAX(jst, jst+LOW-2),MIN(jend, jst+HIGH-2),I

do i=ist, iend, I

C

c

c forward elimination and back substitution for diag. block inversion

c

enddo

enddo

CALL CAP SEND(v(I,2,HIGH, k),nx0*5-10,3,CAP RIGHT)

Figure 3 Implementation of a software pipeline using (a) OpenMP (b) message passing

2

Io 3

5

3

2

lO2

5

5

3
2

10

5

3
2

| : ! l i |U|ll ! !

O

_,\o... ° .:

""_. "O-o :
- e_

r

I l i , i ,_,,I i i

1 2 345 10 2030

I I I I i i i , I I I i

g>..
-"_o___o_o.O

7=.1
| : : I I ' '

--o.

I , i i i t,ill i i

1 2 3 45 10 20 30

Number of Processors

I I I I I I I I I I I I

;%.

•] : : ,,| , ,

m MPI-hand
----Am OMP-hand

] [--e-- CAPO -:.

!|)_ --©-- SGI-PFA !

e_ 2

I I I I p ,,,*I , _"

1 2 345 10 2030

Class A, Origin201_!

Figure 4 Various parallelisations of the NAS Parallel benchmark codes

25

0

2 4 8 16 32
Processors

* results shown for a small problem size + PC-based cluster using MYRINET

Figure 5 Performance of the message passing-based parallel FDL3DI code that was

generated using the Computer Aided parallelisation toolkit.

Communication type total

EXCHANGE : 194

SEND/RECEIVE : 72

BROADCAST : 22

REDUCTION : 20

PIPELINE : 24

Table 1 Summary of communication types generated for the FDL3DI code as part of the

message passing-based parallelisation using the Computer Aided parallelisation toolkit

300

250

A

200

el
_" 150

E
N 100

50

0

1 2 4 8 16 32
Processors

Figure 6 Performance on an SGI Origin 2000 of the OpenMP directive-based parallel

FDL3DI code that was generated using the Computer Aided parallelisation toolkit.

Directive type total

PARALLEL Regions : 46

PARALLEL + DO Regions : 43

Parallel DO Loops : 194

ATOMIC/CRITICAL Sections : 1

Regions with FIRSTPRIVATE: 3

Regions with LASTPRIVATE : 1

Table 2 Summary of directive types generated for the FDL3DI code as part of the

OpenMP directive-based parallelisation using the Computer Aided parallelisation toolkit

Original serial code Automatically generated parallel OpenMP code

call r2r(1)

do j=2,jmax

call r2r(j)

enddo

!$OMP

subroutine r2r(j) !$OMP

do k=l,kmax

° o .

enddo !$OMP

!$OMP

call r2r(1)

PARALLEL DO DEFAULT(SHARED),PRIVATE(j)

do j=2,jmax

call cap_r2r(j)

enddo

END PARALLEL

subroutine r2r(j)

PARALLEL DO DEFAULT(SHARED),PRIVATE(k)

do k=l, kmax

, ° •

enddo

END PARALLEL

subroutine cap_r2r(j)

do k=l,kmax

enddo

Figure 7 Automatic routine duplication to exploit parallelism at a number of levels

Figure 8 Call graph for the R-Jet code. Duplicated routines are shown highlighted

400-

350-

A 300-
8

250-
200-

•_ 150-
1--

100-

50-

0
1 2 4 8 16 32

P ro ce sso rs

Figure 9 Performance on an SGI Origin 2000 of the OpenMP directive-based parallel R-

Jet code that was generated using the Computer Aided parallelisation toolkit.

Directive type total

PARALLEL Regions : 9

PARALLEL + DO Regions : 41

Parallel DO Loops : 32

REDUCTION loops : 4

Regions with FIRSTPRIVATE: 1

Table 3 Summary of directive types generated for the R-Jet code as part of the OpenMP

directive-based parallelisation using the Computer Aided parallelisation toolkit

1000

=m

Q.
A

o 100

E
t_

I--

10

MPI groups

MPI groups

MPI groups

-_-6 MPI groups

1 10 1O0 1000
Processors

Figure 10 Performance of hybrid parallel code that includes MPI (performed manually at

the zone level) and OpenMP (done using the toolkit and exploiting parallelism within a

zone).

Directive type total

PAP_LLEL Regions : 95

PARALLEL + DO Regions : 297

Parallel DO Loops : 251

REDUCTION loops : 79

ATOMIC/CRITICAL Sections : 6

Regions with FIRSTPRIVATE: 2

Table 4 Summary of directive types generated for the INS3D code as part of the

OpenMP directive-based parallelisation using the Computer Aided parallelisation

toolkit. (The code read into the toolkit was an MPI parallel version of the code)

References

1 William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI, 2nd Edition, MIT
Press, 1992.

2 Johnson S P and Cross M, "Mapping Structured Grid Three-Dimensional CFD Codes

Onto Parallel Architectures" Applied Mathematical Modelling, 15 1991.

3 Ierotheou C.S., Forsey C. and Block U. "Parallelisation of novel 3D hybrid structured-

unstructured grid CFD production code" HPCN95, Springer-Verlag, 1995.

4 SGI Origin 2000 User guide, SGI, Mountain View, USA.

5 Johnson S.P., Ierotheou C.S. and Cross M. "Automatic Parallel Code Generation For

Message Passing on Distributed Memory Systems" Parallel Computing, 22, 227-258, 1996.

6 Zima H P, Bast H -J, and Gerndt H M, "SUPERB- A Tool for Semi-Automatic

MIMD/SIMD Parallelisation" Parallel Computing, 6, 1988.

7 Kuck et al., "The Structure of an Advanced Retargetable Vectorizer, Supercomputers:

design and Applications Tutorial" (Hwang K, ed) IEEE Society Press, Silver Spring MD,
1984.

8 Blume W., Eigenmann R., Faigin K., Grout J., Lee J., Lawrence T., Hoeflinger J.,

Padua D., Paek Y., Petersen P., Pottenger B., Rauchwerger L., Tu P., Weatherford S.

"Restructuring Programs for High-Speed Computers with Polaris, 1996 ICPP Workshop

on Challenges for Parallel Processing", pages 149-162, August 1996.

9 Wilson R.P, French R.S,Wilson C.S, Amarasinghe S.P,

Anderson J.M, Tjiang S.W.K, Liao S, Tseng C., Hall M.W, Lam M. and Hennessy J.,

"SUIF." An Infrastructure for Research on Parallelizing and Optimizing Compilers"

Computer Systems Laboratory, Stanford University, Stanford, CA

10 Kuck and Associates, Inc., "Parallel Performance of Standard Codes on the Compaq

Professional Workstation 8000: Experiences with Visual KAP and the KAP/Pro Toolset

under Windows NT, "Champaign, IL, Assure/Guide Reference Manual," 1997

11 OpenMP Fortran/C Application Program Interface, http://v_-,v.openmp.or_

12 Ierotheou C.S., Johnson S.P., Cross M. and Leggett P.F., "Computer aided

parallelisation tools (CAPTools) - conceptual overview and performance on the

parallelisation of structured mesh codes" Parallel Computing, 22, 197-226, 1996.

13 Evans E.W, Johnson S.P., Leggett P.F. and Cross M. "The automatic code generation

of asynchronous communications embedded within a parallelisation tool'" Parallel

Computing, 23, 1493-1523, 1997.

14EvansE.W., JohnsonS.P.,LeggettP.F.,CrossM. "Automaticand Effective Multi-

Dimensional Parallelisation of Structured Mesh Based Codes ". Parallel Computing, 26,

677-703, 2000.

15 Johnson S.P., Ierotheou C.S. and Cross M. "Computer Aided Parallel&ation Of

Unstructured Mesh Codes ", Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications, Editors H.R.Arabnia et al, publisher
CSREA, vol. 1,344-353, 1997.

16 Johnson S.P., Cross M. and Everett M. "Exploitation of Symbolic Information In

Interprocedural Dependence Analysis" Parallel Computing, 22, 197-226, 1996.

17 Leggett P., Marsh A.T.J., Johnson S.P. and Cross M. "User Interface Philosophy"

Parallel Computing, 22, 259-288, 1996.

18 Jin H., Frumkin M., Yan J. "Automatic generation of OpenMP directives and its

application to Computational Fluid Dynamics codes "'. Proceedings of International

Symposium on High Performance Computing, Tokyo, p440, Japan, Oct. 16-19, 2000.

19 Leggett P.F., Johnson S.P. and Cross M. "CAPLib - A 'Thin Layer' Message Passing

Library to support computational mechanics codes on distributed memory parallel

systems ".

20 Bailey D., Barton J., Lasinski T., and Simon H. (Eds.), "The NAS Parallel

Benchmarks ", NAS Technical Report RNR-91-002, NASA Ames Research Center,

Moffett Field, CA, 1991.

21 Bailey D., Harris T., Saphir W., Van der Wijngaart R., Woo A., and Yarrow M., "The

NAS Parallel Benchmarks 2.0", RNR-95-020, NASA Ames Research Center, 1995.

NPB2.3, http://www.nas.nasa.gov/So ftware/NPB/

22 Kiris, C, Kwak D and Chan W., "Parallel Unsteady Turbopump Simulations For

Liquid Rocket Engines". Proceedings of Supercomputing 2000, Dallas, Texas, 2000.

